
Crack me if you can
2015 write-up

12/08/2015

1

A screenshot from our Hash Management System “TeamLogic” dashboard

AMD dook splitter winxp5421
blazer gearjunkie tony wonder
casha hops usasoft
cvsi noob waffle

14 participating members, 12 active from all over the world

12/08/2015

2

Before the contest

Prior to the contest several MPI clusters were setup rocking the latest Bleeding-Jumbo, props to the
JtR community for their marvellous work on John-the-ripper. Our hash management system
‘TeamLogic’ was also updated for improved dynamic hash format support as we expected really
exotic algorithms to be added to the mix. We used a TeamSpeak3 server for primary
communications and a forum reserved for miscellaneous uses.

During the contest

After seeing the algorithms we decided to reserve all CPU resources for the slow crypt functions
including SHA-512(unix), scrypt & bcrypt. All other algos including NTLM, SHA512, md5(crypt),
descrypt and nsldap/s were predominately run on GPU. While the hashes with known hash types
were being loaded into our hash management system, we were able to leverage the simultaneous
hash algorithm parallel processing capability of MDXfind to rapidly identify ambiguous hash types. A
very early analysis of our initial cracks revealed that we were dealing with foreign passwords,
through the use of MDXfind as a wordlist parser, we were able to quickly filter through our lists
selecting only passwords with foreign characters. Dictionary attacks against the slower algorithms
were immediately started early on and we had hits across all algorithms roughly 3 hours into the
contest.

Upon noticing foreign passwords, our developer immediately enforced strict HEX$[] encoding on all
algorithms to ensure optimal compatibility for plaintexts. Thankfully, our system was already UTF-8
compliant so we didn’t have issues at all submitting/exporting bad plains, we didn’t hear anything
from Korelogic, so assumed we were doing it right.

The basic approach was simple, identify patterns in the quicker algos and slowly work our way up in
algorithm complexity, applying the same rules and patterns. Two algorithms namely NTLM and
MD5(crypt)/des(crypt) weren’t of particular interest to us, as they were either too low in points or
not worth their crack value, these were not a high priority for us. However, we couldn’t help
ourselves from the slow bcrypt hashes especially since they were 1000 points each.

Initial attacks using ?b?b masks were carried out to test the waters, once enough information was
gathered we switched to a much more efficient method of emulating specific mask attacks by using
pre-generated lists in combination attacks. Similarly we were able to modify our rule processor
‘Rulify3’ to accommodate for multi-byte character replacement. Custom rule processors weren’t
really necessary, by understanding the basic principles of UTF-8 encoding and how a rule processor
functions, we were able to successfully emulate UTF-8 characters, and incorporate them into our
attacks by crafting special rules which could be used with standard rule processors.

Several hours into the competition our team automagically divided into two groups, one group
attacked whatever they wanted with whatever they wanted. The second group focussed on
maximizing and optimizing pattern attacks and crafting specialized attacks, but more importantly
ensuring there was as little resource idling as possible. Resources were continuously shared
between the two groups. Without the tremendous efforts of group one, group two wouldn’t have
been able continuously obtain unique data for analysis to refine attacks. This was only made possible
by combining the different skillsets of each member and working in unity.

12/08/2015

3

For some visuals please refer to the figure below which depicts the hash/crack distribution spread
for our team. Orange denotes total hashes for each algorithm while blue shows indicates the
number of cracks carried out by our team.

Patterns

UTF-8 (ASCII look-a-like charset) /＆%%#

These were detected and 3 dictionaries where produced, singles, doubles, triples. Using a
combination attack mode, this allowed us to ‘bruteforce’ the full keyspace for ‘length 4’ and ‘length
5’ of this mixed ascii + UTF-8 keyspace giving us very successful results across all algorithms. This one
was slightly trickly as it appeared Korelogic had also mixed in standard asci characters into the
keyspace. We did not have time to thoroughly explore the other look-a-like alpha characters and
only dealt with the symbols and numbers, however did note their presence.

Korean alphabet Hangul / kieukssangdigeutchieut

Similar to the above, we produced singles, doubles and triples of the Korean Hangul alphabet and
used them in combination attacks across all algorithms for combinations of 2,3 & 4.

German, Finnish, French, Danish and other European words / attaché

Rulify3 was modified to incorporate the ‘~’ rule (~XYZ, swaps X for YZ) supporting 1 to 2 byte
character swaps, our wordlists were run through this tool and then dictionaries generated were
uniqued and run through as dict attacks. Existing dictionaries where filtered either with Unified List
manager (ULM) or MDXfind to select for extended ascii or UTF-8 containing character containing
words.

Other Tibetan, Chinese, Japanese, Cyrillic, Arabic charsets

UTF-8 charsets were extracted from ourfounds, these charsets were then expanded for better
coverage. These UTF-8 encoded characters were then reversed as their byte form followed by

74
778

1002

12931
80619699

5657

142

265

2424

1412

4788

19284

2413614502

12112

2422

2406

bcrypt

des

md5crypt

nsldap

ntsha512

nsldaps

scrypt

sha512(crypt)

Cracked

Total

12/08/2015

4

expansion using ULMs prefix everywhere function, transforming them into ‘multi-byte insertion
rules’ which were compatible with existing non-UTF-8 aware rule processors. We used this
technique to target and insert UTF-8 characters into various positions across our wordlists for hybrid
rule attacks. We found these rules worked well when paired with small standard clean dictionaries
for target languages. We also yielded success when stacking the ‘c’ rule.

Overwrite rules were generated in a similar manner, instead we would insert dummy characters into
the wordlist to make up for bytes then overwrite them. However due to the pairing of UTF-8
characters with specific groups of words it was more optimal to use the aforementioned Rulify3 rule
processor and the rule sets with specific wordlists.

Other patterns / RageהMeze

Word UTF-8 Word, Word UTF-8 UTF-8 Word pattern was also detected, however due to time
constraints we were not able to fully scan this small pattern across every algorithm. It however
appeared that there were only a limited number of word combinations.

Highlights

Some memorable moments would be; receiving a picture from one of the members who was
participating in the contest while attending a wedding. It really gave us a good laugh to see his
dedication. Another instance one member gave us full reign of their GPU farm and we joked that
they would probably have a surprise power bill after we were finished, considering the number of
gpus and their lack of idle time…. only to our surprise it was business as usual for them.

Several hours in someone asked… “so when are the challenges coming out?” “It’s okay... give them
twelve hours and we might have something”, someone else replied.

We didn’t worry too much about the tweeted hints, until later in the contest when we asked our rep
to pay Korelogic another visit to obtain some intel (thanks dook!!). After promptly receiving the MD5
hashes and just as quickly cracking them, we had a good laugh since it wasn’t like we didn’t know all
the passwords were foreign at that point.

After the contest

Once the contest ended one of the members pointed out that not all crackers were capable of
cracking the UTF-8 encoded NTLM’s properly, while some other programs did. We suspect this is due
to byte-order reversal and zero adding in alternating steps as a ‘cheat’ UTF-16LE conversion in the
MD4 digest, for optimization purposes. This would have resulted in incorrect UTF-8 to UTF-16LE
conversion leading to hashes being missed, JtR did not appear to suffer this issue.

Thoughts

We may not have had the biggest team and probably didn’t possess largest amount of compute
power. Considering the fact that we are a relatively new team, we were able to work cohesively and
use our resources both efficiently and effectively resulting in placing 2nd for KoreLogic’s “Crack me if
you can 2015”. We have thoroughly impressed ourselves; having beaten the former champions
John-users and InsidePro, we have demonstrated that we are worthy opponents. Congratulations to
Team Hashcat for taking the 1st place win. Congratulations to “Shining Ponies”, “Toil” and
“ICantBelieveItsNotButter”, you guys also did an impressive job. If I recall correctly, at one stage one
of the street teams were actually scoring higher than one of the pro teams.

12/08/2015

5

Thank you to KoreLogic for hosting ‘Crack me if you can” for the 6th time, we understand how
difficult it is to come up with something challenging. I guess UTF-8 password were simply inevitable,
we really appreciate your prompt replies preparedness and visuals on the statistic pages.

#FOLOW_US #JOIN_US #LOVE_US #HATE_US #CONTACT_US @CynoPrime

Twitter: @CynoPrime
Blog: cynosureprime.blogspot.com
Email: cynosureprime@gmail.com

Resource Package

http://downloads.unifiedlm.com/contests/cmiyc2015/resources.7z
https://twitter.com/cynoprime

